507 research outputs found

    Sneutrino Inflation with Asymmetric Dark Matter

    Full text link
    The asymmetric dark matter scenario is known to give an interesting solution for the cosmic coincidence problem between baryon and dark matter densities. In the scenario, the dark matter asymmetry, which is translated to the dark matter density in the present universe, is transferred from the B-L asymmetry generated in the early universe. On the other hand, the generation of the B-L asymmetry is simply assumed, though many mechanisms for the generation are expected to be consistent with the scenario. We show that the generation of the asymmetry in the sneutrino inflation scenario works similarly to the asymmetric dark matter scenario, because the non-renormalizable operator which translates the B-L asymmetry to the dark matter asymmetry is naturally obtained by integrating right-handed neutrinos out. As a result, important issues concerning cosmology (inflation, the mass density of dark matter, and the baryon asymmetry of the universe) as well as neutrino masses and mixing have a unified origin, namely, the right-handed neutrinos.Comment: 11 pages, 4 figures; v2: reference added, Fig. 3 changed and explanation added; v3: version accepted for publication in PR

    A Computational Predictor of Human Episodic Memory Based on a Theta Phase Precession Network

    Get PDF
    In the rodent hippocampus, a phase precession phenomena of place cell firing with the local field potential (LFP) theta is called “theta phase precession” and is considered to contribute to memory formation with spike time dependent plasticity (STDP). On the other hand, in the primate hippocampus, the existence of theta phase precession is unclear. Our computational studies have demonstrated that theta phase precession dynamics could contribute to primate–hippocampal dependent memory formation, such as object–place association memory. In this paper, we evaluate human theta phase precession by using a theory–experiment combined analysis. Human memory recall of object–place associations was analyzed by an individual hippocampal network simulated by theta phase precession dynamics of human eye movement and EEG data during memory encoding. It was found that the computational recall of the resultant network is significantly correlated with human memory recall performance, while other computational predictors without theta phase precession are not significantly correlated with subsequent memory recall. Moreover the correlation is larger than the correlation between human recall and traditional experimental predictors. These results indicate that theta phase precession dynamics are necessary for the better prediction of human recall performance with eye movement and EEG data. In this analysis, theta phase precession dynamics appear useful for the extraction of memory-dependent components from the spatio–temporal pattern of eye movement and EEG data as an associative network. Theta phase precession may be a common neural dynamic between rodents and humans for the formation of environmental memories

    Research on the making of Japanese language class to build <Authentic Learning>: "Zhuangzi" as a teaching material

    Get PDF
    This paper summarizes the results of research conducted to clarify the inner facts and methods of creating a Japanese language class that builds "authentic learning". In this research, first of all, we focused on the use of "language perspectives and ideas", which are considered to be unique to Japanese language studies, and searched for the specifics of them using "Zhuangzi" as a teaching material. By focusing on words that are different from previous learning ("人皆" and "此獨") , learning for modern social and cultural problems and individual problems that live in society and groups, it became clear that people can deepen their thoughts

    Nucleocytoplasmic transport of Alp7/TACC organizes spatiotemporal microtubule formation in fission yeast

    Get PDF
    Ran GTPase activates several target molecules to induce microtubule formation around the chromosomes and centrosomes. In fission yeast, in which the nuclear envelope does not break down during mitosis, Ran targets the centrosomal transforming acidic coiled-coil (TACC) protein Alp7 for spindle formation. Alp7 accumulates in the nucleus only during mitosis, although its underlying mechanism remains elusive. Here, we investigate the behaviour of Alp7 and its binding partner, Alp14/TOG, throughout the cell cycle. Interestingly, Alp7 enters the nucleus during interphase but is subsequently exported to the cytoplasm by the Exportin-dependent nuclear export machinery. The continuous nuclear export of Alp7 during interphase is essential for maintaining the array-like cytoplasmic microtubule structure. The mitosis-specific nuclear accumulation of Alp7 seems to be under the control of cyclin-dependent kinase (CDK). These results indicate that the spatiotemporal regulation of microtubule formation is established by the Alp7/TACC–Alp14/TOG complex through the coordinated interplay of Ran and CDK

    Quo Vadis, Artificial Intelligence?

    Get PDF
    corecore